
KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association

Jens Kehne | Marius Hillenbrand

Operating Systems Group, Department of Computer Science

www.kit.edu

Microkernel Construction
I.11 – Small Address Spaces (Special Optimization for Untagged TLBs)

Lecture Summer Term 2017

Wednesday 15:45-17:15 R 131, 50.34 (INFO)

Operating Systems Group

Department of Computer Science

2 05.07.2017

Untagged TLB Context-Switch Costs

Enter/exit kernel

Switch thread

Switch address space

Flush TLB

Refill TLB

Refill L1 caches

(P4 only, not P3/Core)

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 2

40 … 200 cycles

 10 cycles

 50 … 80 cycles

6 … 96 TLB refills

15 … 40 cycles/refill

 100 … 4000 cycles

486 … PIII

150 … 200 cycles

 10 cycles

 230 … 250 cycles

6 … 192 TLB refills

15 … 500 cycles/refill

 100 … 96000 cycles

Pentium 4

12 K trace cache

8 K data cache

15 … 25 cycles/refill

 100 … 16000 cycles

Operating Systems Group

Department of Computer Science

3 05.07.2017

Untagged TLB Context-Switch Costs

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 3

40 pages total 5 pages total

A B  Even when calling a thread with a very

small TLB working set

 Thread A frequently calls thread B

 Working sets

 Thread A: 4 different sets of 10 pages

between B-calls

 Thread B: always the same 5 pages

Operating Systems Group

Department of Computer Science

4 05.07.2017

Untagged TLB Context-Switch Costs

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 4

A B

Flush TLB

Flush TLB

Flush TLB

Flush TLB

Flush TLB

Flush TLB

Flush TLB

Flush TLB

 [cycles]

 8 IPCs (w/o AS costs): 1440

 60 TLB misses: 900 … 30000

 8 TLB flushes: 400 … 2000

 Untagged TLB total: 2740 … 33440

10 TLB misses

10 TLB misses

10 TLB misses

10 TLB misses

5 TLB misses

5 TLB misses

5 TLB misses

5 TLB misses

 Even when calling a thread with a very

small TLB working set

 Thread A frequently calls thread B

 Working sets

 Thread A: 4 different sets of 10 pages

between B-calls

 Thread B: always the same 5 pages

Operating Systems Group

Department of Computer Science

5 05.07.2017

Tagged TLB

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

A B

VADDR PADDR rwx U/K sz

A
B

A
B

ASID

A

A

B

 Tagged TLB:

 Associate Address-Space ID with

translations

 No flushing during AS switch

 Not available for x86 address spaces

(only with virtualization extensions)

Operating Systems Group

Department of Computer Science

6 05.07.2017

Untagged TLB Context-Switch Costs

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 6

A B

 [cycles]

 8 IPCs (w/o AS costs): 1440

 60 TLB misses: 900 … 30000

 8 TLB flushes: 400 … 2000

 Untagged TLB total: 2740 … 33440

10 TLB hits

10 TLB hits

10 TLB hits

10 TLB hits

5 TLB hits

5 TLB hits

5 TLB hits

5 TLB hits

 Tagged TLB total:  1500

 Even when calling a thread with a very

small TLB working set

 Thread A frequently calls thread B

 Working sets

 Thread A: 4 different sets of 10 pages

between B-calls

 Thread B: always the same 5 pages

Operating Systems Group

Department of Computer Science

7 05.07.2017

SMALL ADDRESS SPACES ON X86

How to emulate tagged TLBs?

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 7

Operating Systems Group

Department of Computer Science

8 05.07.2017

Address Spaces

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 8

B

C

A Kcode, Kdata, Physmem

CS, DS

Operating Systems Group

Department of Computer Science

9 05.07.2017

Address Spaces

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 9

B

C

A Kcode, Kdata, Physmem

user CS, DS

kernel CS, DS

Operating Systems Group

Department of Computer Science

10 05.07.2017

Small Address Spaces

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 10

B

C

A Kcode, Kdata, Physmem

CS, DS for A, B, C

Operating Systems Group

Department of Computer Science

11 05.07.2017

Small Address Spaces

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 11

B

C

A Kcode, Kdata, Physmem

CS, DS for A, B, C,

X Y

for X, Y

Operating Systems Group

Department of Computer Science

12 05.07.2017

Small Address Spaces

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 12

B

C

A Kcode, Kdata, Physmem X Y A

Operating Systems Group

Department of Computer Science

13 05.07.2017

Small Address Spaces

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 12

B

C

A Kcode, Kdata, Physmem X Y

B

Operating Systems Group

Department of Computer Science

14 05.07.2017

Small Address Spaces

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 12

B

C

A Kcode, Kdata, Physmem X Y

X

Operating Systems Group

Department of Computer Science

15 05.07.2017

Small Address Spaces

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 12

B

C

A Kcode, Kdata, Physmem X Y

Y

Operating Systems Group

Department of Computer Science

16 05.07.2017

Small Address Spaces

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 12

B

C

A Kcode, Kdata, Physmem X Y A

Operating Systems Group

Department of Computer Science

17 05.07.2017

Address Space (AS) vs.

Hardware AS (HwAS)

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 13

B

C

A Kcode, Kdata, Physmem X A A Y Y A Kcode, Kdata, Physmem X Y

Operating Systems Group

Department of Computer Science

18 05.07.2017

Long-IPC Implementation Revisited

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 14

large / large

large / small

small / small

large / same

small / same

small / large  Current HwAS

Source / Destination Method
Source Dest

offset

temp mapping

switch HwAS

direct

- no HwAS switch -
direct

- no HwAS switch -
direct

- no HwAS switch -
direct

- no HwAS switch -
direct

- no HwAS switch -

small / large  Current HwAS

temp mapping

switch HwAS

or

first switch HwAS

then -direct-

0

0

source AS

base

0

source AS

base
source AS

base

source AS

base

kernel

com area

dest AS

base
dest AS

base

0

source AS

base

0
Kernel

com area

0

Temporary mapping area

alias

kernel com(munication) area

Operating Systems Group

Department of Computer Science

19 05.07.2017

Long-IPC Implementation Revisited

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 15

large / large

large / small

small / small

large / same

small / same

small / large  Current HwAS

Source / Destination Method
Source Dest

offset

temp mapping

switch HwAS

direct

- no HwAS switch -

direct

- no HwAS switch -
direct

- no HwAS switch -
direct

- no HwAS switch -
direct

- no HwAS switch -

small / large  Current HwAS

temp mapping

switch HwAS

or

first switch HwAS

then -direct-

0

0

source AS

base

0

source AS

base
source AS

base

source AS

base

kernel

com area

dest

AS base

dest AS

base

0

source AS

base

0
Kernel

com area

0

d
e
st

 A
S
 b

a
se

Operating Systems Group

Department of Computer Science

20 05.07.2017

Long-IPC Implementation Revisited

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 16

large / large

large / small

small / small

large / same

small / same

small / large  Current HwAS

Source / Destination Method
Source Dest

offset

temp mapping

switch HwAS

direct

- no HwAS switch -

direct

- no HwAS switch -

direct

- no HwAS switch -
direct

- no HwAS switch -
direct

- no HwAS switch -

small / large  Current HwAS

temp mapping

switch HwAS

or

first switch HwAS

then -direct-

0

0

source

AS base

0

source AS

base
source AS

base

source AS

base

kernel

com area

dest

AS base

dest

AS base

0

source AS

base

0
Kernel

com area

0

so
u
rc

e
 A

S
 b

a
se

Operating Systems Group

Department of Computer Science

21 05.07.2017

Long-IPC Implementation Revisited

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 17

large / large

large / small

small / small

large / same

small / same

Source / Destination Method
Source Dest

offset

temp mapping

switch HwAS

direct

- no HwAS switch -

direct

- no HwAS switch -

direct

- no HwAS switch -

direct

- no HwAS switch -
direct

- no HwAS switch -

0

0

source

AS base

0

source AS

base
source AS

base

source AS

base

kernel

com area

dest

AS base

dest

AS base

0

source

0

Operating Systems Group

Department of Computer Science

22 05.07.2017

Long-IPC Implementation Revisited

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 18

large / large

large / small

small / small

large / same

small / same

small / large  Current HwAS

Source / Destination Method
Source Dest

offset

temp mapping

switch HwAS

direct

- no HwAS switch -

direct

- no HwAS switch -

direct

- no HwAS switch -

direct

- no HwAS switch -

direct

- no HwAS switch -

small / large  Current HwAS

temp mapping

switch HwAS

or

first switch HwAS

then -direct-

0

0

source

AS base

0

source

AS base

source AS

base

source AS

base

kernel

com area

dest

AS base

dest

AS base

0

source

AS base

0
Kernel

com area

0

Operating Systems Group

Department of Computer Science

23 05.07.2017

Long-IPC Implementation Revisited

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 19

large / large

large / small

small / small

large / same

small / same

small / large  Current HwAS

Source / Destination Method
Source Dest

offset

temp mapping

switch HwAS

direct

- no HwAS switch -

direct

- no HwAS switch -

direct

- no HwAS switch -

direct

- no HwAS switch -

direct

- no HwAS switch -

small / large  Current HwAS nso

0

0

source

AS base

0

source

AS base

source

AS base

source AS

base

kernel

com area

dest

AS base
dest

AS base

0

source

AS base

0
Kernel

com area

0

Operating Systems Group

Department of Computer Science

24 05.07.2017

Long-IPC Implementation Revisited

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 20

large / large

large / small

small / small

large / same

small / same

small / large  Current HwAS

Source / Destination Method
Source Dest

offset

temp mapping

switch HwAS

direct

- no HwAS switch -

direct

- no HwAS switch -

direct

- no HwAS switch -

direct

- no HwAS switch -

direct

- no HwAS switch -

small / large  Current HwAS
temp mapping

switch HwAS

0

0

source

AS base

0

source

AS base

Source

AS base

source

AS base

kernel

com area

dest

AS base

dest

AS base

0

Source

AS base

0

kernel

com area

Operating Systems Group

Department of Computer Science

25 05.07.2017

Long-IPC Implementation Revisited

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 21

large / large

large / small

small / small

large / same

small / same

small / large  Current HwAS

Source / Destination Method
Source Dest

offset

temp mapping

switch HwAS

direct

- no HwAS switch -

direct

- no HwAS switch -

direct

- no HwAS switch -

direct

- no HwAS switch -

direct

- no HwAS switch -

small / large  Current HwAS

temp mapping

switch HwAS

– or –

first switch HwAS

then direct

0

0

source

AS base

0

source

AS base

source

AS base

source

AS base

kernel

com area

dest

AS base

dest

AS base

0

source

AS base

0

kernel

com area

– or –

0

Operating Systems Group

Department of Computer Science

26 05.07.2017

Long-IPC Implementation Revisited

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 22

large / large

large / small

small / small

large / same

small / same

small / large  Current HwAS

Source / Destination Method
Source Dest

offset

temp mapping

switch HwAS
direct

- no HwAS switch -
direct

- no HwAS switch -
direct

- no HwAS switch -
direct

- no HwAS switch -
direct

- no HwAS switch -

0

0

source AS

base

0

source AS

base
source AS

base

Kernel

com area
dest AS

base
dest AS

base

0

source AS

base

0

small / large  Current HwAS

temp mapping

switch HwAS

– or –

first switch HwAS

then direct

source

AS base

kernel

com area

– or –

0

 A global bit in page table entry

indicates that TLB entry should not be

flushed on TLB flushes

 Used for not flushing kernel entries

Operating Systems Group

Department of Computer Science

27 05.07.2017

Long-IPC Implementation Revisited

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 23

large / large

large / small

small / small

large / same

small / same

small / large  Current HwAS

Source / Destination Method
Source Dest

offset

temp mapping

switch HwAS
direct

- no HwAS switch -
direct

- no HwAS switch -
direct

- no HwAS switch -
direct

- no HwAS switch -
direct

- no HwAS switch -

0

0

source AS

base

0

source AS

base
source AS

base

Kernel

com area
dest AS

base
dest AS

base

0

source AS

base

0

small / large  Current HwAS

temp mapping

switch HwAS

– or –

first switch HwAS

then direct

source

AS base

kernel

com area

– or –

0

 A global bit in page table entry

indicates that TLB entry should not be

flushed on TLB flushes

 Used for not flushing kernel entries

No “global bit”:
All TLB entries flushed

Operating Systems Group

Department of Computer Science

28 05.07.2017

Long-IPC Implementation Revisited

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 24

large / large

large / small

small / small

large / same

small / same

small / large  Current HwAS

Source / Destination Method
Source Dest

offset

temp mapping

switch HwAS
direct

- no HwAS switch -
direct

- no HwAS switch -
direct

- no HwAS switch -
direct

- no HwAS switch -
direct

- no HwAS switch -

0

0

source AS

base

0

source AS

base
source AS

base

Kernel

com area
dest AS

base
dest AS

base

0

source AS

base

0

small / large  Current HwAS

 A global bit in page table entry

indicates that TLB entry should not be

flushed on TLB flushes

 Used for not flushing kernel entries

With “global bit”:
Non-global TLB entries flushed

temp mapping

switch HwAS

– or –

first switch HwAS

then direct

source

AS base

kernel

com area

– or –

0

Operating Systems Group

Department of Computer Science

29 05.07.2017

Long-IPC Implementation Revisited

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 25

large / large

large / small

small / small

large / same

small / same

small / large  Current HwAS

Source / Destination Method
Source Dest

offset

temp mapping

switch HwAS
direct

- no HwAS switch -
direct

- no HwAS switch -
direct

- no HwAS switch -
direct

- no HwAS switch -
direct

- no HwAS switch -

0

0

source AS

base

0

source AS

base
source AS

base

Kernel

com area
dest AS

base
dest AS

base

0

source AS

base

0

small / large  Current HwAS

 A global bit in page table entry

indicates that TLB entry should not be

flushed on TLB flushes

 Used for not flushing kernel entries

 small spaces are global over all hardware

address spaces

 Mark small spaces’ PTEs as global

With “global bit”:
Non-global TLB entries flushed

temp mapping

switch HwAS

– or –

first switch HwAS

then direct

source

AS base

kernel

com area

– or –

0

Operating Systems Group

Department of Computer Science

30 05.07.2017

Long-IPC Implementation Revisited

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 26

small / small

large / same

small / same

small / large  Current HwAS

large / large

large / small

Source / Destination Method
Source Dest

offset

temp mapping

switch HwAS

direct

- no HwAS switch -

direct

- no HwAS switch -

direct

- no HwAS switch -

direct

- no HwAS switch -

direct

- no HwAS switch -

0

0

source AS

base

0

source AS

base
source AS

base

Kernel

com area

dest AS

base

dest AS

base

0

source AS

base

0

small / large  Current HwAS

TLB misses on com area

and in dest space

(after the switch).

temp mapping

switch HwAS

– or –

first switch HwAS

then direct

source

AS base

kernel

com area

– or –

0

With “global PTE entries”,
TLB misses only in dest space.

Without global pages,

TLB misses in source and dest.

Operating Systems Group

Department of Computer Science

31 05.07.2017

Temporary Mapping Revisited

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Leave thread:

 if mytcb.partner  nilthread then

 myPDE.TMarea := nil ;

 if dest AS = my AS then

 flush TLB

 fi

 fi .

27

current AS

Optimization: avoids second TLB

flush if subsequent thread and AS switch

would flush TLB anyway

Operating Systems Group

Department of Computer Science

32 05.07.2017

Evicting the Temporary Mapping Area

We must evict the temp. mapping from the
TLB when switching from … to …

Depending on whether small spaces use the
temp. mapping / or not at all

from \ to small AS
Active

large AS
Inactive
large AS

small AS Yes / No Yes / No1 No / No

large AS Yes / Yes2 Yes No

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 28

1: assuming the temp. mapping is invalidated when switching to the small space
2: to prevent T3 from using T1’s mapping area after T1 (large AS A)  T2 (small AS B)  T3 (large AS A),

possible due to 1

Operating Systems Group

Department of Computer Science

33 05.07.2017

Temporary Mapping Revisited

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Leave thread:

 if mytcb.partner  nilthread then

 myPDE.TMarea := nil ;

 if (dest is small or

 dest HwAS = curr HwAS)

 then

 flush TLB

 fi

 fi .

30

current AS

Assuming small
spaces use the temp.
mapping area.

Operating Systems Group

Department of Computer Science

34 05.07.2017

Temporary Mapping Revisited

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017

Leave thread:

 if mytcb.partner  nilthread then

 myPDE.TMarea := nil ;

 if (dest is small or

 dest HwAS = curr HwAS) and

 not curr is small
 then

 flush TLB

 fi

 fi .

31

current AS

Assuming small
spaces never use the
temp. mapping area.

Operating Systems Group

Department of Computer Science

35 05.07.2017

Thread Switching Revisited

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 32

 A sends to B, executes in HwAS B

 A is preempted or PF in A

 Thread switch from A to X

B X

A A

Operating Systems Group

Department of Computer Science

36 05.07.2017

Thread Switching Revisited

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 33

B

 A sends to B, executes in HwAS B

 A is preempted or PF in A

 thread switch from A to X, ...

A

X X

 A sends to B, executes in HwAS B

 A is preempted or PF in A

 Thread switch from A to X

 Switch back from X to A
A

Operating Systems Group

Department of Computer Science

37 05.07.2017

Thread Switching Revisited

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 34

B

 A sends to B, executes in HwAS B

 A is preempted or PF in A

 Thread switch from A to X

 Switch back from X to A

X X

A A

Operating Systems Group

Department of Computer Science

38 05.07.2017

Thread Switching Revisited

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 35

B X

 A sends to B, executes in HwAS B

 A is preempted or PF in A

 Thread switch from A to X

 Switch back from X to A

 Preemption or PF resumes in A,
but A now executes in HwAS Xx

A A

Operating Systems Group

Department of Computer Science

39 05.07.2017

Thread Switching Revisited

A Solution

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 36

B X

 A sends to B, executes in HwAS B

 A A

 A is preempted or PF in A

 Mark A “in partner space”

In partner

 space

Operating Systems Group

Department of Computer Science

40 05.07.2017

Thread Switching Revisited

A Solution

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 37

B

 A sends to B, executes in HwAS B

 A is preempted or PF in A

 Mark A “in partner space”

 Thread switch from A to X
A A

X X

In partner

 space

Operating Systems Group

Department of Computer Science

41 05.07.2017

Thread Switching Revisited

A Solution

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 38

B X

 A sends to B, executes in HwAS B

 A is preempted or PF in A

 Mark A “in partner space”

 Thread switch from A to X

 Switch back from X to A

 Also switch HwAS to HwAS B

A A

Operating Systems Group

Department of Computer Science

42 05.07.2017

SMALL ADDRESS SPACES

AND FAST SYSTEM CALLS
Getting around automatic
segment register reloading

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 39

Operating Systems Group

Department of Computer Science

43 05.07.2017

Fast System Calls

Optimized instructions

sysenter/sysexit (Intel)

syscall/sysret (AMD)

Faster than software
interrupts

Can avoid certain checks

Unconditionally reload
segment registers
(page based protection)

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 40

450 MHz
PIII

Int / Iret 280

Sysenter / Sysexit 50

Operating Systems Group

Department of Computer Science

44 05.07.2017

Fast System Calls

Optimized instructions

sysenter/sysexit (Intel)

syscall/sysret (AMD)

Faster than software
interrupts

Can avoid certain checks

Unconditionally reload
segment registers
(page based protection)

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 41

450 MHz
PIII

1.5 GHz
P4

Int / Iret 280 1600

Sysenter / Sysexit 50 140

Problematic for

small spaces

(segment based

protection)

Operating Systems Group

Department of Computer Science

45 05.07.2017

Fast System Calls

Automatic Segment Register Reloading

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 42

B

C

A Kcode, Kdata, Physmem X Y A

CS, DS for A

Operating Systems Group

Department of Computer Science

46 05.07.2017

Fast System Calls

Automatic Segment Register Reloading

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 43

B

C

A Kcode, Kdata, Physmem X Y

kernel CS, DS

sysenter

Operating Systems Group

Department of Computer Science

47 05.07.2017

Fast System Calls

Automatic Segment Register Reloading

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 44

B

C

A Kcode, Kdata, Physmem X Y

user CS, DS

A

sysexit

Task A now has

full access to small

space area!

Operating Systems Group

Department of Computer Science

48 05.07.2017

Automatic Segment Register Reloading

Solution – In-Kernel Trampoline

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 45

Kernel_entry:
 
 perform system call
 
 sysexit

User_function:

 

 sysenter

 

%cs = kernel_cs
%ss = kernel_ds

Application Kernel

Operating Systems Group

Department of Computer Science

49 05.07.2017

Automatic Segment Register Reloading

Solution – In-Kernel Trampoline

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 46

Kernel_entry:
 
 perform system call
 
 sysexit

Trampoline:
 mov $user_ds,
%ss
 lret

User_function:

 

 sysenter

 

%cs = kernel_cs
%ss = kernel_ds

Pops off %cs and %eip

from user stack (%esp)

%cs = user_cs_4gb
%ss = user_ds_4gb

Application Kernel

push %user_cs
push %eip

Operating Systems Group

Department of Computer Science

50 05.07.2017

Automatic Segment Register Reloading

Solution – In-Kernel Trampoline

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 47

Kernel_entry:
 
 perform system call
 
 sysexit

Trampoline:
 mov $user_ds, %ss
 lret

User_function:

 

 sysenter

 

What if %esp points to small space memory?

Works since we set %ss before

accessing stack.

Application Kernel

Operating Systems Group

Department of Computer Science

51 05.07.2017

Automatic Segment Register Reloading

Solution – In-Kernel Trampoline

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 48

Kernel_entry:
 
 perform system call
 
 sysexit

Trampoline:
 mov $user_ds, %ss
 lret

User_function:

 

 sysenter

 

What if interrupts arrive or

lret instruction raises exceptions
(e.g., page-fault on stack access)?

 Exception gets handled

 Return to faulting instruction (lret)

 Via iret (no nested fast syscall)

 Restores %cs = user_cs_4gb and

%ss = user_ds.

 Kernel must have set up %[defg]s before!

 Continue to completion

Application Kernel

