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Untagged TLB Context-Switch Costs 

 

Enter/exit kernel 

Switch thread 

Switch address space 

Flush TLB 

Refill TLB 

 

 

Refill L1 caches 

(P4 only, not P3/Core) 
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40 … 200 cycles 

 10 cycles 

 50 … 80 cycles 

6 … 96 TLB refills 

15 … 40 cycles/refill 

 100 … 4000 cycles 

486 … PIII 

150 … 200 cycles 

 10 cycles 

 230 … 250 cycles 

6 … 192 TLB refills 

15 … 500 cycles/refill 

 100 … 96000 cycles 

Pentium 4 

12 K trace cache 

8 K data cache 

15 … 25 cycles/refill 

 100 … 16000 cycles 
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Untagged TLB Context-Switch Costs 
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40 pages total 5 pages total 

A B  Even when calling a thread with a very 

small TLB working set 

 Thread A frequently calls thread B 

 Working sets 

 Thread A: 4 different sets of 10 pages 

between B-calls 

 Thread B: always the same 5 pages 
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Untagged TLB Context-Switch Costs 
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A B 

Flush TLB 

Flush TLB 

Flush TLB 

Flush TLB 

Flush TLB 

Flush TLB 

Flush TLB 

Flush TLB 

   [cycles] 

 8 IPCs (w/o AS costs): 1440 

 60 TLB misses: 900 … 30000 

 8 TLB flushes: 400 … 2000  

 

 Untagged TLB total: 2740 … 33440  

10 TLB misses 

10 TLB misses 

10 TLB misses 

10 TLB misses 

5 TLB misses 

5 TLB misses 

5 TLB misses 

5 TLB misses 

 Even when calling a thread with a very 

small TLB working set 

 Thread A frequently calls thread B 

 Working sets 

 Thread A: 4 different sets of 10 pages 

between B-calls 

 Thread B: always the same 5 pages 
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Tagged TLB 
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A B 

VADDR PADDR rwx U/K sz 

A 
B 

A 
B 

ASID 

A 

A 

B 

 Tagged TLB: 

 Associate Address-Space ID with 

translations 

 No flushing during AS switch 

 Not available for x86 address spaces 

(only with virtualization extensions) 
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Untagged TLB Context-Switch Costs 
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A B 

   [cycles] 

 8 IPCs (w/o AS costs): 1440 

 60 TLB misses: 900 … 30000 

 8 TLB flushes: 400 … 2000 

 Untagged TLB total: 2740 … 33440  

10 TLB hits 

10 TLB hits 

10 TLB hits 

10 TLB hits 

5 TLB hits 

5 TLB hits 

5 TLB hits 

5 TLB hits 

 Tagged TLB total:  1500  

 Even when calling a thread with a very 

small TLB working set 

 Thread A frequently calls thread B 

 Working sets 

 Thread A: 4 different sets of 10 pages 

between B-calls 

 Thread B: always the same 5 pages 
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SMALL ADDRESS SPACES ON X86 

How to emulate tagged TLBs? 
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Address Spaces 
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B 

C 

A Kcode, Kdata, Physmem 

CS, DS 
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Address Spaces 
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B 

C 

A Kcode, Kdata, Physmem 

user CS, DS 

kernel CS, DS 
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Small Address Spaces 
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B 

C 

A Kcode, Kdata, Physmem 

CS, DS for A, B, C 
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Small Address Spaces 
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B 

C 

A Kcode, Kdata, Physmem 

CS, DS for A, B, C, 

X Y 

for X,           Y 
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Small Address Spaces 
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B 

C 

A Kcode, Kdata, Physmem X Y A 
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Small Address Spaces 
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B 

C 

A Kcode, Kdata, Physmem X Y 

B 
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Small Address Spaces 
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B 

C 

A Kcode, Kdata, Physmem X Y 

X 
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Small Address Spaces 
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B 

C 

A Kcode, Kdata, Physmem X Y 

Y 
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Small Address Spaces 
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B 

C 

A Kcode, Kdata, Physmem X Y A 
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Address Space (AS) vs. 

Hardware AS (HwAS) 
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B 

C 

A Kcode, Kdata, Physmem X A A Y Y A Kcode, Kdata, Physmem X Y 
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Long-IPC Implementation Revisited 
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large / large 

large / small 

small / small 

large / same 

small / same 

small / large  Current HwAS 

Source / Destination Method 
Source       Dest 

offset 

temp mapping 

switch HwAS 

direct 

- no HwAS switch - 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 

small / large  Current HwAS 

temp mapping 

switch HwAS 

or 

first switch HwAS 

then -direct- 

0 

0 

source AS 

base 

0 

source AS 

base 
source AS 

base 

source AS 

base 

kernel 

com area 

dest AS  

base 
dest AS 

base 

0 

source AS 

base 

0 
Kernel 

com area 

 

0 

 

Temporary mapping area 

alias 

kernel com(munication) area 
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Long-IPC Implementation Revisited 
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large / large 

large / small 

small / small 

large / same 

small / same 

small / large  Current HwAS 

Source / Destination Method 
Source       Dest 

offset 

temp mapping 

switch HwAS 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 

small / large  Current HwAS 

temp mapping 

switch HwAS 

or 

first switch HwAS 

then -direct- 

0 

0 

source AS 

base 

0 

source AS 

base 
source AS 

base 

source AS 

base 

kernel 

com area 

dest 

AS base 

dest AS 

base 

0 

source AS 

base 

0 
Kernel 

com area 

 

0 

 

d
e
st

 A
S
 b

a
se
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Long-IPC Implementation Revisited 
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large / large 

large / small 

small / small 

large / same 

small / same 

small / large  Current HwAS 

Source / Destination Method 
Source       Dest 

offset 

temp mapping 

switch HwAS 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 

small / large  Current HwAS 

temp mapping 

switch HwAS 

or 

first switch HwAS 

then -direct- 

0 

0 

source  

AS base 

0 

source AS 

base 
source AS 

base 

source AS 

base 

kernel 

com area 

dest  

AS base 

dest  

AS base 

0 

source AS 

base 

0 
Kernel 

com area 

 

0 

 

so
u
rc

e
 A

S
 b

a
se
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Long-IPC Implementation Revisited 
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large / large 

large / small 

small / small 

large / same 

small / same 

Source / Destination Method 
Source       Dest 

offset 

temp mapping 

switch HwAS 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 
direct 

- no HwAS switch - 

0 

0 

source  

AS base 

0 

source AS 

base 
source AS 

base 

source AS 

base 

kernel 

com area 

dest  

AS base 

dest  

AS base 

0 

source 

0 
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Long-IPC Implementation Revisited 
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large / large 

large / small 

small / small 

large / same 

small / same 

small / large  Current HwAS 

Source / Destination Method 
Source       Dest 

offset 

temp mapping 

switch HwAS 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

small / large  Current HwAS 

temp mapping 

switch HwAS 

or 

first switch HwAS 

then -direct- 

0 

0 

source  

AS base 

0 

source  

AS base 

source AS 

base 

source AS 

base 

kernel 

com area 

dest  

AS base 

dest  

AS base 

0 

source 

AS base 

0 
Kernel 

com area 

 

0 
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Long-IPC Implementation Revisited 
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large / large 

large / small 

small / small 

large / same 

small / same 

small / large  Current HwAS 

Source / Destination Method 
Source       Dest 

offset 

temp mapping 

switch HwAS 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

small / large  Current HwAS nso 

0 

0 

source 

AS base 

0 

source  

AS base 

source  

AS base 

source AS 

base 

kernel 

com area 

dest  

AS base 
dest  

AS base 

0 

source 

AS base 

0 
Kernel 

com area 

 

0 
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Long-IPC Implementation Revisited 
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large / large 

large / small 

small / small 

large / same 

small / same 

small / large  Current HwAS 

Source / Destination Method 
Source       Dest 

offset 

temp mapping 

switch HwAS 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

small / large  Current HwAS 
temp mapping 

switch HwAS 

0 

0 

source  

AS base 

0 

source  

AS base 

Source 

AS base 

source  

AS base 

kernel 

com area 

dest 

AS base 

dest  

AS base 

0 

Source 

AS base 

0 

kernel 

com area 
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large / large 

large / small 

small / small 

large / same 

small / same 

small / large  Current HwAS 

Source / Destination Method 
Source       Dest 

offset 

temp mapping 

switch HwAS 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

small / large  Current HwAS 

temp mapping 

switch HwAS 

– or – 

first switch HwAS 

then direct 

0 

0 

source  

AS base 

0 

source 

AS base 

source 

AS base 

source  

AS base 

kernel 

com area 

dest  

AS base 

dest  

AS base 

0 

source 

AS base 

0 

kernel 

com area 

– or – 

0 
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Long-IPC Implementation Revisited 
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large / large 

large / small 

small / small 

large / same 

small / same 

small / large  Current HwAS 

Source / Destination Method 
Source       Dest 

offset 

temp mapping 

switch HwAS 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 

0 

0 

source AS 

base 

0 

source AS 

base 
source AS 

base 

Kernel 

com area 
dest AS  

base 
dest AS 

base 

0 

source AS 

base 

0 

small / large  Current HwAS 

temp mapping 

switch HwAS 

– or – 

first switch HwAS 

then direct 

source  

AS base 

kernel 

com area 

– or – 

0 

 A global bit in page table entry 

indicates that TLB entry should not be 

flushed on TLB flushes 

 Used for not flushing kernel entries 
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large / large 

large / small 

small / small 

large / same 

small / same 

small / large  Current HwAS 

Source / Destination Method 
Source       Dest 

offset 

temp mapping 

switch HwAS 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 

0 

0 

source AS 

base 

0 

source AS 

base 
source AS 

base 

Kernel 

com area 
dest AS  

base 
dest AS 

base 

0 

source AS 

base 

0 

small / large  Current HwAS 

temp mapping 

switch HwAS 

– or – 

first switch HwAS 

then direct 

source  

AS base 

kernel 

com area 

– or – 

0 

 A global bit in page table entry 

indicates that TLB entry should not be 

flushed on TLB flushes 

 Used for not flushing kernel entries 

    

     

 

No “global bit”: 
All TLB entries flushed 
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large / large 

large / small 

small / small 

large / same 

small / same 

small / large  Current HwAS 

Source / Destination Method 
Source       Dest 

offset 

temp mapping 

switch HwAS 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 

0 

0 

source AS 

base 

0 

source AS 

base 
source AS 

base 

Kernel 

com area 
dest AS  

base 
dest AS 

base 

0 

source AS 

base 

0 

small / large  Current HwAS 

 A global bit in page table entry 

indicates that TLB entry should not be 

flushed on TLB flushes 

 Used for not flushing kernel entries 

    

       

     

With “global bit”: 
Non-global TLB entries flushed 

temp mapping 

switch HwAS 

– or – 

first switch HwAS 

then direct 

source  

AS base 

kernel 

com area 

– or – 

0 
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large / large 

large / small 

small / small 

large / same 

small / same 

small / large  Current HwAS 

Source / Destination Method 
Source       Dest 

offset 

temp mapping 

switch HwAS 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 
direct 

- no HwAS switch - 

0 

0 

source AS 

base 

0 

source AS 

base 
source AS 

base 

Kernel 

com area 
dest AS  

base 
dest AS 

base 

0 

source AS 

base 

0 

small / large  Current HwAS 

 A global bit in page table entry 

indicates that TLB entry should not be 

flushed on TLB flushes 

 Used for not flushing kernel entries 

 small spaces are global over all hardware 

address spaces 

 Mark small spaces’ PTEs as global 

With “global bit”: 
Non-global TLB entries flushed 

temp mapping 

switch HwAS 

– or – 

first switch HwAS 

then direct 

source  

AS base 

kernel 

com area 

– or – 

0 
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small / small 

large / same 

small / same 

small / large  Current HwAS 

large / large 

large / small 

Source / Destination Method 
Source       Dest 

offset 

temp mapping 

switch HwAS 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

direct 

- no HwAS switch - 

0 

0 

source AS 

base 

0 

source AS 

base 
source AS 

base 

Kernel 

com area 

dest AS  

base 

dest AS 

base 

0 

source AS 

base 

0 

small / large  Current HwAS 

TLB misses on com area 

and in dest space 

(after the switch). 

temp mapping 

switch HwAS 

– or – 

first switch HwAS 

then direct 

source  

AS base 

kernel 

com area 

– or – 

0 

With “global PTE entries”, 
TLB misses only in dest space. 

Without global pages,  

TLB misses in source and dest. 
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Temporary Mapping Revisited 

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 

 

 

 

 

Leave thread: 

 if mytcb.partner  nilthread then  

  myPDE.TMarea := nil ; 

  if dest AS = my AS then 

    flush TLB 

  fi 

 fi . 

  

27 

current AS 

Optimization: avoids second TLB 

flush if subsequent thread and AS switch 

would flush TLB anyway 
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Evicting the Temporary Mapping Area 

We must evict the temp. mapping from the 
TLB when switching from … to … 

Depending on whether small spaces use the 
temp. mapping / or not at all 

from \ to small AS 
Active 

large AS 
Inactive 
large AS 

small AS Yes / No Yes / No1 No / No 

large AS Yes / Yes2 Yes No 

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 28 

1:  assuming the temp. mapping is invalidated when switching to the small space 
2:  to prevent T3 from using T1’s mapping area after T1 (large AS A)  T2 (small AS B)  T3 (large AS A), 

possible due to 1 
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Temporary Mapping Revisited 
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Leave thread: 

 if mytcb.partner  nilthread then  

  myPDE.TMarea := nil ; 

  if (dest is small or 

   dest HwAS = curr HwAS) 

 then 

    flush TLB 

  fi 

 fi . 

30 

current AS 

Assuming small 
spaces use the temp. 
mapping area. 
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Temporary Mapping Revisited 
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Leave thread: 

 if mytcb.partner  nilthread then  

  myPDE.TMarea := nil ; 

  if (dest is small or 

   dest HwAS = curr HwAS) and 

   not curr is small 
 then 

    flush TLB 

  fi 

 fi . 

31 

current AS 

Assuming small 
spaces never use the 
temp. mapping area. 
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Thread Switching Revisited 
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 A sends to B, executes in HwAS B 

 A is preempted or PF in A 

 Thread switch from A to X 

B X 

A A 
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Thread Switching Revisited 
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B 

 A sends to B, executes in HwAS B 

 A is preempted or PF in A 

 thread switch from A to X, ... 

 

 

  

A 

X X 

 A sends to B, executes in HwAS B 

 A is preempted or PF in A 

 Thread switch from A to X 

 Switch back from X to A 
A 
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Thread Switching Revisited 
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B 

 A sends to B, executes in HwAS B 

 A is preempted or PF in A 

 Thread switch from A to X 

 Switch back from X to A 

X X 

A A 
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Thread Switching Revisited 
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B X 

 A sends to B, executes in HwAS B 

 A is preempted or PF in A 

 Thread switch from A to X 

 Switch back from X to A 

 Preemption or PF resumes in A, 
but A now executes in HwAS Xx 

 

 

  

A A 
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Thread Switching Revisited 

A Solution 
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B X 

 A sends to B, executes in HwAS B 

 

 

  A A  

 

 A is preempted or PF in A 

 Mark A “in partner space”  

In partner           

              space 
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Thread Switching Revisited 

A Solution 
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B 

 A sends to B, executes in HwAS B 

 A is preempted or PF in A 

 Mark A “in partner space” 

 Thread switch from A to X 
A A 

X X 

In partner           

              space 
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Thread Switching Revisited 

A Solution 
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B X 

 A sends to B, executes in HwAS B 

 A is preempted or PF in A 

 Mark A “in partner space” 

 Thread switch from A to X 

 Switch back from X to A 

 Also switch HwAS to HwAS B 

A A 
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SMALL ADDRESS SPACES 

AND FAST SYSTEM CALLS 
Getting around automatic 
segment register reloading 

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2017 39 
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Fast System Calls 

Optimized instructions 

sysenter/sysexit (Intel) 

syscall/sysret (AMD) 

 

Faster than software 
interrupts 

Can avoid certain checks 

Unconditionally reload 
segment registers 
(page based protection) 
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450 MHz 
PIII 

Int / Iret 280 

Sysenter / Sysexit 50 
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Fast System Calls 

Optimized instructions 

sysenter/sysexit (Intel) 

syscall/sysret (AMD) 

 

Faster than software 
interrupts 

Can avoid certain checks 

Unconditionally reload 
segment registers 
(page based protection) 
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450 MHz 
PIII 

1.5 GHz 
P4 

Int / Iret 280 1600 

Sysenter / Sysexit 50 140 

Problematic for 

small spaces 

(segment based 

protection) 
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B 

C 

A Kcode, Kdata, Physmem X Y A 

CS, DS for A 
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B 

C 

A Kcode, Kdata, Physmem X Y 

kernel CS, DS 

sysenter 
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B 

C 

A Kcode, Kdata, Physmem X Y 

user CS, DS 

A 

sysexit 

Task A now has 

full access to small 

space area! 
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Kernel_entry: 
    
 perform system call 
    
 sysexit 
 
 
  

User_function: 
 
    
 
 sysenter 
 
    
 
  

%cs = kernel_cs 
%ss = kernel_ds 

Application Kernel 
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Kernel_entry: 
    
 perform system call 
    
 sysexit 
 
 
 
Trampoline: 
 mov $user_ds, 
%ss 
 lret 

User_function: 
 
    
 
 sysenter 
 
    
 
  

%cs = kernel_cs 
%ss = kernel_ds 

Pops off %cs and %eip 

from user stack (%esp) 

%cs = user_cs_4gb 
%ss = user_ds_4gb 

Application Kernel 

push %user_cs 
push %eip 
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Kernel_entry: 
    
 perform system call 
    
 sysexit 
 
 
 
Trampoline: 
 mov $user_ds, %ss 
 lret 

User_function: 
 
    
 
 sysenter 
 
    
 
  

What if %esp points to small space memory? 
 

Works since we set %ss before 

accessing stack. 

Application Kernel 
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Kernel_entry: 
    
 perform system call 
    
 sysexit 
 
 
 
Trampoline: 
 mov $user_ds, %ss 
 lret  

User_function: 
 
    
 
 sysenter 
 
    
 
  

What if interrupts arrive or 

lret instruction raises exceptions 
(e.g., page-fault on stack access)? 

 
 Exception gets handled 

 Return to faulting instruction (lret) 

 Via iret (no nested fast syscall) 

 Restores %cs = user_cs_4gb and 

%ss = user_ds. 

 Kernel must have set up %[defg]s before! 

 Continue to completion 

Application Kernel 


